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Introduction: first order phase transitions 

T
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Microstructures: optical microscopy 

Transformed sample of Cu-Zn-Al (after cooling, no external stress) 

 
Optical microscope 
with polarized light 
 
3mm x 2mm 
 
Absence of a cha-
racteristic scale of 
the transformed 
domains 
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Microstructures: lack of charactersitic scales 

Radially averaged Fourier power spectrum:power-law behaviour 
Large scale region: related to the impossibility of the different variants to 
penetrate each other 
  
 
 
 

Fe-Mn-Si                                  
 
 

A.Y.Pasko, A.A.Likhachev, Y.N.Koval, V.I.Kolomystev, J.PHYS. IV France 7 
Colloque C5,435  (1997).  

A.A.Likhachev, J.Pons, E.Cesari, A.Yu.Pasko, V.I. Kolomytsev , Scripta Materialia 
43, 765 (2000) 

Cu-Al-Ni                                 
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First-order phase transitions hardly occur in equilibrium: 
 
   ▪ low T: high energy barriers 
 
           Hysteresis 
 
 
 
 
  
 ▪ disorder & long range elastic forces 
   Inhomogeneous behaviour 
  
 

 Extended FOPT 
          Thermoelastic equilibrium 

Metastability and hysteresis 

σ

T

σ

T
G.B.Olson & M.Cohen, Scripta Metall 9, 1247 (1975). 
J.Ortín & A.Planes, Acta Metall 37, 1433 (1989)  

J.Ortín & A.Planes, Chapter 5, in “The 
Science of Hysteresis”, edited by 
G.Bertotti & I.Mayergoyz, Acad. Press. 
(2005).   
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Martensitic phase transition is a sequential process 

 
The microstructure is not built instantaneously as assumed by some models 
that are based on energy minimization. On the contrary it is built sequentially.  
 
The final microstructure is not the one that minimizes some energy functional, 
but the one that results from the “sequential path” that minimizes the energy 
at every instant of time. 
 
 
 
 
 
n Video by Robert Niemann PhD Thesis: NiMnGa epitaxial film on a substrate 
 
     http://www.ifw-dresden.de/about-us/people/dr-robert-niemann/ 
 
 
n  Acoustic emission & high sensitivity calorimetry studies 

     Talk by A.Planes on Wednesday afterlunch 
 
 

Experimental examples 
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Experimental results from AE and calorimetry studies (1) 

Ex: CuZn-Al 
 
 
Acoustic Emission activty 
(number of events per 
temperature interval) 
 
 
 
 
 
 
 
 
 
 
Calorimetry: 
Heat power exchange per 
temperature interval 
 

M.C.Gallardo et al. PRB 81, 174102 (2010) 
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Experimental results from AE and calorimetry studies (2) 

 
Criticality: Energies and amplitudes of AE events recorded during the full 
transition are power-law distributed 
 
 
 
 
 
 
Ex: FePd 
 

p(E)dE = 1
Zε
E−εdE p(A)dA = 1

Zα
A−αdA

Bonnot et al. PRB 78, 184103 (2008) 
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Results from AE and calorimetry studies (3) 

 
Weak universality Materials transforming to the same structure show the same 
exponents 
 
 

14 

Carrillo et al PRL81, 1889 (1998)  

Cu-based alloys: 

 

Two families: 

 

Transformation Cubic-18R 

(12 variants) 

 

Transformation Cubic-2H 

(6 variants) 
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Results from AE and calorimetry studies 

 
The critical exponents increase with the number of equivalent variants. 
 
When an external field or stress is applied, the number of possible variants is 
reduced and, correspondingly, the exponents decrease 
 

Mart. phase Variant
s 

α ε z 

Monoclininc 12 2.8 – 3 2 2 

Orthorrombic 6 2.4-2.6 1.7-1.8 2 

Tetragonal 3 2.2-2.4 1.6-1.5 2 

E∝ Az
z = 2
α = 2ε −1
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Simple models 
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   Sequential partitioning model (1)  

Minimal model that illustrates the consequences of the sequential 
character of the athermal phase transitions 
 
Single variant transition (transformed/untransformed) 
 
Excluded volume interaction only (no back transformations) 
 
Scalar model: s size (volume) of an individual transformation event 
(avalanche) 
 
 
 
 
 
 
 
 Question: Is there a power-law distribution of “avalanches”? 
 
 
 
 
 

  

Frontera et al., PRE 52, 5671 (1995) 

V

s

V − s
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Scaling hypothesis: probability of choosing a certain fraction s/V of the 
remaining volume V  
 
 
 
 
Let the probability of extracting a fragment of size s in the k-step, 
from a system with original size V,  be:  
 
Recurrence 
 
 
 
 
 
 
 
Doing some algebra one can obtain the recurrence: 
 
 
 
 
 
 
 
 
 
 
 
 
 

  

pk (s;V )

   Sequential partitioning model (2)  

p(s;V )ds = g s
V
⎛

⎝
⎜

⎞

⎠
⎟
ds
V

pk (s;V ) = p(r;V )pk−1(s;V − r)0

V−s
∫ dr

p1(s;V ) = p(s;V )

p2 (s,V ) = ds10

V−s
∫ p(s1,V )p(s,V − s1)

p3(s,V ) = ds2
0

V−s

∫ ds10

V−s2−s∫ p(s1,V )p(s2,V − s1)p(s,V − s1 − s2 )
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Expected number of fragments  with size between s and s+ds after M 
extractions 
 
 
 
 
 
 
 
 

  

   Sequential partitioning model (3)  

nM (s;V ) = pk (s;V )
k=1

M

∑

nM (s;V ) = p(s;V )+ p(r;V )nM−1(s;V − r)0

V−s
∫

If the limit                                 exists, it must satisfy: 
 
 
 
 
And should be “normalizable” 
 
 

n(s;V ) ≡ nM→∞(s;V )

sn(s;V )
0

V
∫ ds =V

n(s;V ) = p(s;V )+ p(r;V )n(s;V − r)
0

V−s
∫
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Solution for uniform 
 
 
 
Solution for restricted β 
 
 
 
 
 
There are also analytical solutions for general β-distributions  
 
 
 
In general there are arguments based on the computations of the 
momenta of n(s;V) that indicate that   
 
 
 
 
 
 
 
 
 
 
 
 

  

  Sequential partitioning model: solutions  

g(x) = (β +1)(1− x)β β > −1

g(x) =1 n(s;V ) =1/ s

n(s;V ) = β +1
s

1− s
V

"

#
$

%

&
'
β

≈
1
s

s <<V

n(s;V ) ≈ s−1 s <<V

g∝ xα (1− x)β
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  Sequential partitioning model: solutions  

a)  Uniform 
b)  Triangular 
c)  Restricted β-distribution  for β=3 
d)  g(x)=1/2√x 
e)  Beta distribution with α=1, β=5 
f)  Beta distribution with α=3, β=2 
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Ball & Planes model  (PLKK model?) 
J.M.Ball, P.Cesana & B.Hambly, MATEC WoC 33,02008 (2015). 
G.Torrents, X.Illa, E.Vives & A.Planes, submitted to PRE 
 
 
Elongated martensitic domains (needle like) grow sequentially, nucleating at 
random sites in untransformed regions and growing linearly 
 
Domains grow along few directions fixed by the symmetries of the problem 
 
Retransformations are not possible (domains cannot cross) 
 
 
Example: 2d, 2 “variants”, 90°, parallel to the sample boundaries 
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Discrete (convenient for simulations) 
-Needle domains with width “a”, are placed at 
discrete positions on a LxL grid 
 
-The sample fully transforms.  
 
Question: What is the average number H(ℓ) of 
variants with a certain size  ℓ ?  ? 
 
-  ℓ  will be a discrete variable taking values 1,2,…L  will be a discrete variable taking values 1,2,…L

  
 
 
 
 
 
 
                                                   

  

Continuum:  
-Needle domains are 1d-lines in a continuum rectangle [0,1]x[0,1] 
 
-The system is never fully transformed 
 
-Question: After many draws, what will be the average number 
(density) H(ℓ) of horizontal segments with length between ℓ and ℓ and ℓ
+dℓ? ? 
 
-  ℓ  will be a continuum variable taking values in (0,1]    will be a continuum variable taking values in (0,1]  

Two formulations: continuum and discrete versions 
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Analytic treatment will be done in the case in which the probabilities 
of every variant are not equal: 
 
pv- probability of drawing a vertical variant 
ph- probability of drawing a horizontal variant 
 
 
We will not assume                    , but we will solve a generic case 
with:  
 
 
 
 
Moreover, for the continumm case, we will assume that the system 
has dimensions LhxLv 
                                               

  

Generalization to asymmetric probabilities and sample shape 

pv + ph ≤1

pv =1− ph
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Numerical simulations  

Example 1: 2 variants: (1,0) & (0,1) 

500x500 subset from a 
2000x2000 system  

Fortran code that generates final configurations, until complete fill-up. In the 
initial steps it chooses sites at random on the lattice and in the final steps it  
keeps a list of empty sites and chooses at random from the list  
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Numerical simulations 

Example: 2 variants: (1,1) & (-1,1) 

The code can be easily adapted to different cases: orientation of variants, 
number of variants, etc… 
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Numerical simulations 

Example: 4 variants (1,2) (-1,2) (2,1) (2,-1) 
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Numerical simulations 

Hexagonal lattice: 3 variants (1,0), (0,1) (-1,1) 
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Numerical simulations 

Hexagonal lattice: 6 variants  
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Dipolar and boundary effects 

Square sample, (1,0)&(0,1) ph=pv=1/2 

Aquí va la 
imatge 
d’un 

sistema 
sencer 

The distribution of 
variants is not 
homogeneous, but 
influenced by the 
system boundaries 
 
There exist and 
effective correlation 
between domains 
belonging to the same 
variant 
 
It can be interpreted as 
a dipolar/ferroelastic 
effective interactions 

8192x8192 system  
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Dipolar and boundary effects: why? 

Between two vertical domains (yellow)that are close one to the other it is more 
probable to find points associated to vertical variants (yellow) than horizontal 
variants (black). Why? 
 
Despite ph=pv, the vertical lines will be much longer than the horizontal ones, 
thus creating an effective atractive dipolar/ferroelastic interaction.  
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Boundary effects: order parameter 

Coarse-grain the lattice in small cells 
(8x8) and and measure: 

1024x1024 cells  
8192x8192 system 
  

nvertical sites − nhorizontal sites
nsites in the cell
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Numerical simulation of distributions of lengths 

Histograms corresponding to the full LxL system (irrespective of the spatial position) 
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) 
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Analytic solution of the continuum case 

Let us consider the continuum case: a square [0,1]x[0,1]. 
 
Let ph and pv be the probabilities of drawing a horizontal and a vertical line 
respectively 
 
Let H(ℓ) be the average number (density) of horizontal lines (a.n.h.l.) with 
length within (ℓ,ℓ+dℓ) 
 
We can assume that: 
  
where h(ℓ) is continuum and non-zero on the interval ℓ= (0,1) 
 
After drawing the first line, the system splits into two subsystems equivalent 
to the first one, but eventually re-scaled. Let us consider the first draw, H(ℓ) 
will have two contributions:  
 
 
 
 
where                   are conditional probabilities. 
 
Let us analyze the two problems separately: 
 
 
 
 
  

H (ℓ) =Aδ(ℓ−1)+ h(ℓ)

H (ℓ) =ph ×H
[h](ℓ)+ pv ×H

[v](ℓ)
H [h,v](ℓ)
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Analytical solution of the continuum case 

a.n.h.l. given the first line is horizontal 
 
 
 
 
a.n.h.l. given the first line is vertical 
 
 
 
 
… changing variables (t = ℓ/z, dt = - ℓ dz/z2) 
 
 
 
 
 
Putting things together: 
 
 
 
 
 
 
 
  

H [h](ℓ) =1 δ(ℓ−1)+ 2 Aδ(ℓ−1)+ h(ℓ)[ ]

H [v](ℓ) = 2 Θ(z− ℓ)dz
0

1

∫ A1
z
δ
ℓ
z
−1

⎛

⎝
⎜

⎞

⎠
⎟+
1
z
h ℓ
z
⎛

⎝
⎜
⎞

⎠
⎟

⎡

⎣
⎢

⎤

⎦
⎥=

Aδ(ℓ−1)+ h(ℓ) = ph (1+ 2A)δ(ℓ−1)+ 2h(ℓ)[ ]+ pv 2A+ 2 h(t) dt
tℓ

1

∫
⎡

⎣
⎢

⎤

⎦
⎥

z 

= 2 dt
ℓ

1

∫ A1
t
δ t −1( )+1

t
h t( )

⎡

⎣⎢
⎤

⎦⎥
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Analytical solution of the continuum case 

By comparing the terms that multiply the δ-function 
 
 
and for the continuum part: 
 
 
Diferentiating:  
 
 
 
Solving: 
 
 
 
The continuum part is a power-law with an exponent that depends on ph and 
pv , but it only makes sense for ph<1/2.  
 
For ph≥1/2, the assumption of infinitely thin domains makes non-sense: one 
can generate too many horizontal lines. We need a cutoff ! 
 
For ph→0 the size distribution “of the very minoritary variant” is a power-law 
with an exponent -2 (if ph+pv=1) 
 
 
 
 
 
 
 
  

A = ph
1− 2ph

h(ℓ)(1− 2ph ) =
2phpv
1− 2ph

+ 2pv h(t) dt
tℓ

1

∫

h(ℓ) = 2pv ph
1− 2ph( )2

ℓ
−
2 pv
1−2 ph

dh(ℓ)
dℓ

= −
2pv
1− 2ph

h(ℓ)
ℓ

→
dh
h
= −

2pv
1− 2ph

dℓ
ℓ
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Analytical solution of the discrete case (Genís Torrents) 

In this case, we want to compute the average number of horizontal lines 
in a system with size LhxLv 
 
 
where the variable ℓ is now discrete and ranges from 1 to Lh 
 
Following the same arguments as before, we can write: 
 
 
  

H (ℓ;Lh,LV ) = phδ(ℓ− Lh )+
2ph
Lv

H (ℓ;Lh, j)
j=1

Lv−1

∑ +
2pv
Lh

H (ℓ; j,Lv )
j=ℓ

Lh−1

∑

H (ℓ;Lh,Lv )

j 

j Oxford, September 19th, 2016 38 



Construction of recurrence 

In a Lh x Lv diagram, this equation involves summing many terms: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
For ℓ<Lh-1 
 
 
 
 
 
  

Lh  

Lv  

ℓ Lh  

Lv  

H (ℓ;Lh,Lv ) =
2ph + Lv −1

Lv
H (ℓ;Lh,Lv −1)+

2pv + Lh −1
Lh

H (ℓ;Lh −1,Lv )

−
2 pv+Lh−1( ) 2 ph+Lv−1( ) − 2 ph 2 pv

LhLv
H (ℓ;Lh −1,Lv −1)

H (ℓ;Lh,LV ) = phδ(ℓ− Lh )+
2ph
Lv

H (ℓ;Lh, j)
j=1

Lv−1

∑ +
2pv
Lh

H (ℓ; j,Lv )
j=ℓ

Lh−1

∑
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General recurrence and simple solutions 

In general, it is possible to write en equation as a sum of 4 terms that equals 
to a inhomogeneous term independent of H 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
(Note that this equation is linear in H and that mixes problems corresponding 
to different sizes) 
 
Let us start by finding some simple solutions, corresponding to the cases  
ℓ=Lh  and  ℓ=Lh -1  
 
For Lv=1, the only way to get a horizontal line of size ℓ=Lh is to be lucky and 
choose first to draw horizontal: 
 
 
Then, applying the above recurrence one gets 
 
 
 
 
 
 
 
  

H (ℓ;Lh,Lv )−
2ph + Lv −1

Lv
H (ℓ;Lh,Lv −1)−

2pv + Lh −1
Lh

H (ℓ;Lh −1,Lv )

+
2 pv+Lh−1( ) 2 ph+Lv−1( ) − 2 ph 2 pv

LhLv
H (ℓ;Lh −1,Lv −1) =

ph
Lv

δ(ℓ− Lh )−
Lh −1
Lh

δ(ℓ− Lh +1)
⎛

⎝
⎜

⎞

⎠
⎟

H (Lh;Lh,Lv =1) = ph

H (Lh −1;Lh,Lv =1) =
2pv ph
LhOxford, September 19th, 2016 40 



Solution for the cases  ℓ=Lh &  ℓ= Lh-1      (1)   

It is also simple to extend these two cases ℓ=Lh and ℓ= Lh-1 to any generic Lv,  
By rewriting the recurrence, imposing   ℓ=Lh 
 
 
 
 
 
Which can be rewritten as en homogeneous recurrence for a [H-const] term 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

H (Lh;Lh,Lv )−
2ph + Lv −1

Lv
H (Lh;Lh,Lv −1) =

ph
Lv

The solution is: 
 
 
 
This term should be compared with the term multiplying the δ-function in the 
continuum case 
 
 
 
 
It corresponds to the limit Lv ➝∞. The parenthesis corresponds to the finite size 
correction. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

H (Lh;Lh,Lv ) =
ph

1− 2ph
1− 2ph

Lv !
Γ(2ph + Lv )
Γ(2ph +1)

⎛

⎝
⎜

⎞

⎠
⎟

H (Lh;Lh,Lv )−
ph

1− 2ph

⎡

⎣
⎢

⎤

⎦
⎥=
2ph + Lv −1

Lv
H (Lh;Lh,Lv −1)−

ph
1− 2ph

⎡

⎣
⎢

⎤

⎦
⎥

H ℓ( ) = pH
1− 2pH

δ ℓ−1( )+ h(ℓ)
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Similarly one can also solve the case  ℓ= Lh-1 .  
 
After some algebra one gets  
 
 
 
 
 
 
 
 
 
 
 
  

H Lh −1;Lh,Lv( ) = 2 phpv
Lh (1−2 ph )

2 1+
Γ 2 ph+Lv( )
Lv!Γ 2 ph+1( )

2 ph 2−2 ph( )+ 1−2 ph( ) 1
k+2 phk=1

Lv−1

∑
⎡

⎣

⎢
⎢

⎤

⎦

⎥
⎥

⎧

⎨
⎪

⎩⎪

⎫

⎬
⎪

⎭⎪

Solution for the cases  ℓ=Lh &  ℓ= Lh-1      (2)   
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Construction of a general solution 

These two solutions give some clues in order to find the general solution.  
In order to do it, it is convenient to construct the objects: 
 
 
 
defined from the functions 
 
 
 
where 
 
 
 
 
 
It must be understood that k is an integer, and when k is negative, only terms 
with positive or zero factorial in the divisor contribute to the sum.  
Note also that the Δ’s are polynomials with finite degree, 
 
  
 
so that the sum j=0,..,∞ will have a finite number of terms. 
 
 
 
 
 
 
 
 
 
 
 
  

Ak;ℓh ,ℓv
Lh ,Lv ≡ Ak;ℓh ,ℓv

Lh ,Lv (2ph, 2pv )

Ak;ℓh ,ℓv
Lh ,Lv (xh, xv ) =

xh
j xv

j+k

j!( j + k)!j=0

∞

∑
d 2 j+kΔℓh ,ℓv

Lh ,Lv

dxh
jdxv

j+k

Δℓh ,ℓv
Lh ,Lv xh, xv( ) ≡

ℓh!Γ xh + Lh( )
Lh!Γ xh + ℓh( )

ℓv !Γ xv + Lv( )
Lv !Γ xv + ℓv( )

Δℓh ,ℓv
Lh ,Lv xh, xv( )∝ xh( )Lh−ℓh xv( )Lv−ℓv +....
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Properties of A’s 

Symmetry 
 
 
Sum completion 
 
 
 
 
 
 
Recurrence in L 
 
 
 
 
 
 
 
 
 
That corresponds exactly to the homogeneous part of the recurrence 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

Ak;ℓh ,ℓv
Lh ,Lv (xh, xv ) = A−k;ℓv ,ℓh

Lh ,Lv (xh, xv )

ak
k=−∞

∞

∑ Ak;ℓh ,ℓv
Lh ,Lv (xh, xv ) = Δℓh ,ℓv

Lh ,Lv (xh +
xh
a
, xv + axv )

Ak;ℓh ,ℓv
Lh ,Lv (xh, xv ) =

xhxv − (xh + Lh −1)(xv + Lv −1)[ ]
LvLh

Ak;ℓh ,ℓv
Lh−1,Lv−1(xh, xv )+

+
(xh + Lh −1)

Lh
Ak;ℓh ,ℓv
Lh−1,Lv (xh, xv )+

(xv + Lv −1)
Lv

Ak;ℓh ,ℓv
Lh ,Lv−1(xh, xv )

Oxford, September 19th, 2016 44 



General solution 

The general solution is built by a linear compination of                        with 
different k, ℓh and ℓv  that vanishes when Lv=0 and that matches the 
appropriate boundary conditions at ℓ=Lh-1. 
 
 
 
 
 
 
 
 
 
 
 
 
when  ℓ<Lh   
 
 
 
 
 
 
 
 
 
  

H ℓ;Lh,Lv( ) =

=
2 phpv

(ℓ+1)(1−2 ph )
2

1
2 ph

−1
⎛

⎝
⎜

⎞

⎠
⎟
j

j=0

∞

∑ Aj ;ℓ+1,1
Lh ,Lv −2 ph (2−2 ph )A0;ℓ+1,1

Lh ,Lv +(1−2 ph )A1;ℓ+1,1
Lh ,Lv⎡

⎣
⎤
⎦

⎧

⎨
⎪

⎩⎪

⎫

⎬
⎪

⎭⎪

Ak;ℓh ,ℓv
Lh ,Lv (2ph, 2pv )
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Comparison with the continuum limit when pH is small 

Using the completion property one can make more explicit the divergence 
cancellations and get:  
 
 
 
 
Using Stirling approximation 
 
 
 
 
 
 
 
That can be directly compared with the continuum case when pH is 
small,taking into accout that now  ℓ = 1,2, .. Lh and before 0<ℓ⩽1  
 
 
 
 
 
  

H (ℓ < Lh;Lh,Lv ) =
2phpv

Lh 1− 2ph( )2
ℓH
LH

⎛

⎝
⎜

⎞

⎠
⎟

−
2 pv
1−2 ph

H (ℓ < Lh;Lh,Lv ) =
2phpv Δℓ,1

Lh ,Lv 2pv
1− 2ph

,1
⎛

⎝
⎜

⎞

⎠
⎟+ϑ ph( )

⎡

⎣
⎢

⎤

⎦
⎥

1− 2ph( )2 ℓ+1( )

h(ℓ) = 2pV pH
1− 2pH( )2

ℓ
−
2 pv
1−2 pH
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Numerical algorithm for computing the exact solution 

Usually one is interested in the solution for a system with a certain size LhxLv 
The use of the general recurrence is tedious because one has to solve all the 
problems with sizes smaller than LhxLv 
 
There is a tricky way for avoiding lots of sums. The idea is to use another  
recurrence for the A’s in which instead of decreasing the index L’s we have en 
increase of the index  ℓ ’s  
 
 
 
  Ak;ℓh ,ℓv

Lh ,Lv (2pv, 2ph ) =
2ph2pv − (2pv + ℓh )(2ph + ℓv )[ ]

(ℓh +1)(ℓv +1)
Ak;ℓh+1,ℓv+1
Lh ,Lv (2pv, 2ph )+

+
(2pv + ℓh )
ℓh +1

Ak;ℓh+1,ℓv
Lh ,Lv (2pv, 2ph )+

(2ph + ℓv )
ℓv +1

Ak;ℓh ,ℓv+1
Lh ,Lv (2pv, 2ph )
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Graphical results 

   Solutions for systems with two different sizes LxL and different ph 
 
        213x213=8192x8192≈67x106                 217x217=131072 x 131072=17x109 
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Graphical results 

 
 
 
 
 
 
 
  

   Solutions for a fixed ph = 0.3 < 0.5 and different system sizes 
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Graphical results 

 
 
 
 
 
 
 
  

   Solution for a fixed ph = 0.5 and different system sizes 
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Estimation of the effective power-law exponent 

From the values                                and                                one can estimate  
an effective exponent by approaching the logarithmic derivative as: 

H (ℓ = LH −1;LH ,LV )

 
LV=LH=L 
pV=1-ph 
 
 
 
 
 
 
 
  

H (ℓ = LH − 2;LH ,LV )

α = −
d logH
d logℓ ℓ=L−1

≈ (L −1) H (ℓ = L − 2)
H (ℓ = L −1)

−1
⎡

⎣
⎢

⎤

⎦
⎥
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PLKK model A.Y.Pasko, A.A.Likhachev, Y.N.Koval, V.I.Kolomystev, J.PHYS. 
IV France 7 Colloque C5,435  (1997).  

 
They conclude that the power-law scaling in 
the large scale region is related to the 
impossibility of the different variants to 
penetrate each other 
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Conclusions 

 
Simple geometrical models including only the excluded volume interaction 
explain the power-law behaviour of the distribution of avalanche sizes 
 
Moreover, if the model includes the acicular geometry and the existence of 
symmetrically equivalent variants, the power-law exponents depend on the 
probability of the variants (thus on the number of variants in case of equal 
probability) 
 
More technical conclusion: 
 
It is unusual to find a solution of a non-trivial model that can be computed 
analytically for any finite size L and that exhibits a “critical” (power-law) 
behaviour in the L➝∞ limit. 
 
We are able to sum all the terms of the “partition function” and discover 
how the length scale a becomes irrelevant 
 
 
Future: more than 2 variants in 2D  
           3 variants (planar) in 3D: cubic-tetragonal transformation  
           RG approach 
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Announcement 
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